Relative Roles of CD90 and c‐Kit to the Regenerative Efficacy of Cardiosphere‐Derived Cells in Humans and in a Mouse Model of Myocardial Infarction

نویسندگان

  • Ke Cheng
  • Ahmed Ibrahim
  • M. Taylor Hensley
  • Deliang Shen
  • Baiming Sun
  • Ryan Middleton
  • Weixin Liu
  • Rachel R. Smith
  • Eduardo Marbán
چکیده

BACKGROUND The regenerative potential of cardiosphere-derived cells (CDCs) for ischemic heart disease has been demonstrated in mice, rats, pigs, and a recently completed clinical trial (CADUCEUS). CDCs are CD105(+) stromal cells of intrinsic cardiac origin, but the antigenic characteristics of the active fraction remain to be defined. CDCs contain a small minority of c-kit(+) cells, which have been argued to be cardiac progenitors, and a variable fraction of CD90(+) cells whose bioactivity is unclear. METHODS We performed a retrospective analysis of data from the CADUCEUS trial and a prospective mouse study to elucidate the roles of c-kit(+) and CD90(+) cells in human CDCs. Here, we show, surprisingly, that c-kit expression has no relationship to CDCs' therapeutic efficacy in humans, and depletion of c-kit(+) cells does not undermine the structural and functional benefits of CDCs in a mouse model of myocardial infarction (MI). In contrast, CD90 expression negatively correlates with the therapeutic benefit of CDCs in humans (ie, higher CD90 expression associated with lower efficacy). Depletion of CD90(+) cells augments the functional potency of CDCs in murine MI. CD90(-) CDCs secrete lower levels of inflammatory cytokines and can differentiate into cardiomyocytes in vitro and in vivo. CONCLUSION The majority population of CDCs (CD105(+)/CD90(-)/c-kit(-)) constitutes the active fraction, both in terms of therapeutic efficacy and in the ability to undergo cardiomyogenic differentiation. The c-kit(+) fraction is neither necessary for, nor contributory to, the regenerative efficacy of CDCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Translation of Methdology used in Human Myocardial Imaging to a Sheep Model of Acute Myocardial Infarction

Background: Pre-clinical investigation of stem cells for repairing damaged myocardium predominantly used rodents, however large animals have cardiac circulation closely resembling the human heart. The aim of this study was to evaluate whether SPECT/CT myocardial perfusion imaging (MPI) could be used for assessing sheep myocardium following an acute myocardial infarction (MI) and response to int...

متن کامل

Intracoronary allogeneic cardiosphere‐derived stem cells are safe for use in dogs with dilated cardiomyopathy

Cardiosphere-derived cells (CDCs) have been shown to reduce scar size and increase viable myocardium in human patients with mild/moderate myocardial infarction. Studies in rodent models suggest that CDC therapy may confer therapeutic benefits in patients with non-ischaemic dilated cardiomyopathy (DCM). We sought to determine the safety and efficacy of allogeneic CDC in a large animal (canine) m...

متن کامل

Transplantation of Cardiogenic Pre-Differentiated Autologous Adipose-Derived Mesenchymal Stem Cells Induced by Mechanical Loading Improves Cardiac Function Following Acute Myocardial Infarction in Rabbit Model

Objective- Investigate myocardial performance after autologous adipose-derived (ASCs) mesenchymal stem cell differentiated under equiaxial cyclic strain, transplantation in rabbits with acute myocardial infarction (AMI). Design- Prospective, randomized experimental study Animals- 20 New Zealand White rabbits (2-3 kg) P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014